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FG Intellektik, Technische Universität Darmstadt, Alexanderstr. 10, Darmstadt, GERMANY
{lpaquete, machud, tom}@intellektik.informatik.tu-darmstadt.de

Abstract: In this article, we study local optima, in the Pareto sense, of the biobjective Travelling Salesman Prob-
lem by means of simple extensions of local improvement algorithms. We propose this approach as a first step for
tackling a multiobjective problems that should be used as a reference for future comparisons with metaheuristics
in multiobjective problems. We present experimental results on well known benchmark instances and evaluate the
performance of our approach by means of attainment functions, the coverage measure and the expected value of
the weighted Tchebycheff scalarizing function. Using these performance measures, we also compare our approach
to methods from the literature. Additionally, we give details on the run-time behaviour of our local optimizer using
run-time distributions.
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1 Introduction

Local search algorithms are at the core of the most successful metaheuristics to solve a wide variety of
single objective combinatorial problems such as the Traveling Salesman Problem (TSP). Local search
algorithms for single-objective problems can also be adapted in rather straightforward ways to multi-
objective problems, opening their use inside a metaheuristic for multiobjective problems. A first idea
for extending local search algorithms to multiobjective problems is to maintain the same search strat-
egy of the single-objective local search. The main difference between the single- and the multiobjective
case then lies in the acceptance criterion of new solutions in the local search. Here, we adopt an ac-
ceptance criterion in the Pareto sense: a solution in the neighborhood of the current one is accepted if
it is not worse, i.e., better in at least one objective than the current one and the ones kept on an archive
of non-dominated solutions. As a side effect, this extension of local search allows to define the notion
of Pareto local optima and has the potential of serving as a reference for comparisons of multiobjective
metaheuristics in the very same way as simple local search algorithms are used as a benchmark of the
quality single-objective metaheuristics need to reach at least to be of some use.
In this article, we tackle the biobjective TSP by local improvement algorithms based on simple tour
modifications and using the notion of Pareto optimality. The experimental analysis is based on well
known benchmark instances and the performance assessment is done by means of attainment functions
[3], the coverage measure (C measure) [12] and the expected value of the weighted Tchebycheff scalar-
izing function (R measure) [9]. An insight into the run-time behavior is obtained by measuring run-time
distributions [8]. Some comparisons with the literature are also presented.

2 The Multiobjective TSP

Given a complete, weighted graph G = (N,E, d) with N being the set of nodes, E being the set of
edges fully connecting the nodes, and d being a function that assigns to each edge (i, j) ∈ E a vector
dij , where each element corresponds to a certain measure (e.g., distance, cost) between i and j, then
the multiobjective TSP is the problem of finding a “minimal” Hamiltonian circuit of the graph, i.e., a
closed tour visiting each of the n = |N | nodes of G exactly once. In this study, we consider symmetric
problems, i.e dij = dji for all pairs of nodes i, j, and “minimal” refers to the notion of Pareto optimality.
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Usually there is not only one Pareto optimal solution, but several, which are elements of a Pareto global
optima set. This set contains all solutions that are not dominated by any other solution. In analogy, we
define the Pareto local optima set as the set containing all solutions that are not worse than any solution
of a pre-defined neighborhood of any solution in the Pareto local optima set, and there is no solution in
the set which dominates any of the solutions in this set.
The problem of finding the Pareto global optima set is NP-hard [4]. Since for many problems exact
solutions become quickly infeasible with increasing instance size, the main goal shifts from obtaining
Pareto global optimal solutions to obtaining a good approximation of the Pareto optimal set and local
search algorithms and metaheuristics seem to be a suitable approach for this task [6, 9].

3 The Local Search Algorithms

Our local search algorithm for the multiobjective case uses the same notion of neighborhood as in the
single-objective case. However, the acceptance criterion of the single-objective local search algorithms
needs to be changed to take into account several objectives: While in iterative improvement local search
for the single-objective case a solution is accepted if it is better than the current one, for multiobjec-
tive problems an extension of this acceptance criterion should take into account the concept of Pareto
optimality. For the sake of simplicity, a first approach for an acceptance criterion may be to accept a
neighboring solution, if it is not worse than current solution. However, a solution accepted by such a
criterion may be dominated by other solutions seen previously in the local search. To avoid this, we
maintain an archive of non-dominated solutions. The final acceptance criterion we are using for the local
search is the following: each new solution is compared to the current one. If the new solution is not worse
in the Pareto sense, it is compared in a next step to all solutions in the archive. Only if the new solution is
not dominated by any solution of the archive, it is finally accepted and included into the archive. In fact,
during this process, some solutions from the archive could become dominated by some of the recently
introduced ones. Such solutions are (continuously) eliminated from the archive.
The local search algorithm starts from a randomly generated initial solution that is put into the archive.
It then works as follows: First, it picks a solution randomly from the archive and iteratively explores the
neighborhood of this solution. If a not worse solution is found, it is compared to the solutions in the
archive and the local search continues. If at some point all neighboring solutions were explored and none
is accepted any more, the solution is flagged as visited, i.e, this solution is a Pareto local optima solution
and it will not be chosen again.
We terminate the local search procedure if all the neighborhoods of all solutions in the archive were ex-
plored, i.e. every solution in the Pareto local optimum set is flagged as visited. In this case, a Pareto local
optimum set is found. It should be remarked that this local search is similar to PAES [10], although we
stress the importance of neighborhood and use a simpler acceptance criteria for comparing and accepting
non-dominated solutions. The algorithm 1 presents a pseudo-code for the local search.
For the TSP case, we considered a 2-opt and a 2H-opt local search algorithm:

2-opt Algorithm A 2-opt exchange deletes two edges and replaces them with the only possible couple
of new edges that does not break the tour in two disjoint cycles. The 2-opt algorithm, given some starting
tour, applies improving 2-opt exchanges and ends when no further improving 2-opt exchange can be
found. More precisely, in our case, at each step of the algorithm all edges are investigated according to
a randomly chosen order and the first exchange encountered that leads to a non-dominated new solution
is applied. If all n(n − 1)/2 pairs of edges were considered and no solution is accepted, a Pareto local
optimum solution is reached.

2H-opt Algorithm A 2H-opt exchange, in addition to considering 2-opt exchanges, moves a single
city from one position in the tour to another. As suggested in Bentley [1], our implementation is a simple
extension of the 2-opt algorithm. The search strategy employed in the 2H-opt algorithm is then analogous
to the 2-opt case.
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Algorithm 1 General local search for multiobjective optimization
t← 0
st ← GenerateInitialSolution()
UpdateArchive(st)
repeat

for all s
′

t ∈ Neighborhood(st) do
Evaluate(s′

t)
if s

′

t not worse then st then
UpdateArchive(s′

t) % s
′

t is accepted if not worse then any solution in the Archive
end if

end for
if all Neighborhood(st) visited then

st ← visited

end if
t← t + 1
st ← PickArchive()

until termination condition met

4 Experimental Results

As benchmark instances we considered all six paired combinations of the benchmark 100-city instances
kroA100, kroB100, kroC100 and kroD100. These benchmark instances were defined in [6] and were also
used in [2, 9]. Since our local search uses random decisions, it is expected to return different outcomes
at each run. Therefore, we ran both algorithms 25 times on each of the 6 instances, until a Pareto local
optimum set was found. The code was written in C++ and tested on a Dual Athlon with 1200 MHz and
512 MB of RAM.
Due to the stochastic nature of the runs, statistical inference procedures based on the attainment functions
are appropriate for the performance assessment of the algorithms [3]. Considering an arbitrary instance
A, we formulated a null hypothesis that there is no difference in performance between a local search
algorithm using 2-opt and 2H-opt in terms of attainment functions on instance A versus the alternative
that there is a difference between both. A significance value of 0.05 was defined a priori and a permuta-
tion test with a Smirnov-like test statistic [11] was conducted at each instance. From the six biobjective
instances, the instances (kroA100, kroD100) and (kroB100, kroD100) did not presented any statistical
difference for both algorithms. On the instances, for which statistical differences were found, the sign of
the differences indicated a better performance of 2H-opt in the “tails” of the Pareto local optima set.
Figure 1 plots the 50% attainment surfaces [5] from both algorithms on the instance (kroA100, kroB100).
This plot describes the typical outcome obtained from several runs of both algorithms in the instance con-
sidered. For reference, the outcome obtained by the Genetic Local Search (GLS) in [9] is also plotted.1

In Figure 1, left, almost no difference among the algorithms are visible. Figure 1, right, stresses the
differences in the “tails” by using a loglog scale. The results are similar on the other instances.
For the instances for which we observed statistical differences between the algorithms, we computed the
R measure [7]. The metric parameters were defined according to [9].2 Figure 2, left, plots the boxplot of
the metrics for the instance (kroA100, kroB100). The outcome obtained in [9] according to this measure
is also plotted for reference. This plot also stresses the better performance of 2H-opt algorithm when
compared to 2-opt. The same pattern is also found in all the instances.
The C measure [12] was also applied to both algorithms. Figure 2, middle, presents the box plot for
instance (kroA100, kroB100) for this metric. The values observed can be interpreted as by how much
the outcome of each run of the algorithm covers all the runs of the other. For all instances we observed a
better performance of 2H-opt when compared to 2-opt according to this metric. Figure 2, right, presents
a comparison of 2H-opt with GLS in [9] for reference.
We analyzed the run-time behavior of both algorithms by means of Run Time Distributions (RTD) [8],

1The results were taken from file ND kroab100 4.txt taken from http://www-idss.cs.put.poznan.pl/ jaszkiewicz/motsp.
2We downloaded the code from http://www-idss.cs.put.poznan.pl/ jaszkiewicz/mokp, compiled it with gcc 2.95.3 on the

Linux Suse 7.3 operating system.
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Figure 1: 50% attainment surfaces for the 2-opt and 2H-opt algorithms and the outcome for the GLS on the
instance (kroA100, kroB100) with linear scale (left) and loglog scale (right).
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Figure 2: Results of 2-opt, 2H-opt and GLS in the instance (kroA100, kroB100) according to the R measure (left)
and to the C measure between 2-opt and 2H-opt (middle) and 2H-opt and GLS (right)

which give the empirical probability of finding a solution as a function of the run-time. For the instances
in which no difference was found in terms of attainment functions, we considered the CPU-time of both
algorithms until a Pareto local optima set is found. Otherwise, we estimate the empirical distributions to
reach a certain measure value bound of the R metric.
Figure 3, left, plots the RTDs of both algorithms on the instance (kroA100, kroD100). The plot indicates
a clearly faster computation time of 2-opt. Figure 3, right, plots the RTDs on the instance (kroA100,
kroB100) considering two bounds on the R metric values: the minimum value (a) and the median (b) for
the 2H-opt. These RTDs indicate a trade-off between the two algorithms: 2-opt is faster than 2H-opt, but
gets worse solutions, as stressed previously by the other measures.

5 Conclusions and Further Work

The local search algorithms presented in this article are appealing, because they are based on simple prin-
ciples and they do not require (i) the calculation of ideal points, (ii) the aggregation of criteria, and (iii)
no parameters to be determined. Despite the high quality solutions the local search algorithms obtained,
some preliminary experimental results suggest that they are not really competitive with the currently best
performing metaheuristics. However, the proposed local search algorithm have the potential to serve as
a baseline comparison to benchmark the performance of metaheuristics for multiobjective combinatorial
optimization problems.
In the biobjective TSP benchmarks studied, the performance of the two algorithms seems to be instance
dependent: In some cases, no statistical difference was found between the outcomes of 2-opt and 2H-
opt, while in some other cases they differed significantly. Therefore, also some care must be taken when
aggregating results on such instances. One obvious observation is that 2-opt seems to find faster a Pareto
local optimum set in any case.
The next steps for continuing this research are (i) the study of larger neighborhoods such as 3-opt etc.,
(ii) a more fine-tuned local search implementation exploiting speed-up techniques such as don’t look bits
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Figure 3: Run-time distribution of 2-opt and 2H-opt algorithms in the instance (kroA100, kroD100) (left) and in
the instance (kroA100, kroB100) (right) considering a bound on the minimum value (a) and on the median (b) of
R measure in the 2H-opt.

and nearest neighbor lists, and (iii) the introduction of simple techniques to better approximate the tails
of the Pareto fronts.
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